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Abstrsct We study the electronic properties of a onedimensional diagonal tight-binding 
model with potentials { V,) arranged in generalized Fibonacci (GF) sequences. Using the 
negativeeigenvalue theorem, we calculate the density of States (Dos). The DOS and the V 
dependence of energy spectra for silver-mean (SM) and capper-mean (ai) series clearly 
show distinctive feature% The relation of the energy spectral feature to the p m e u y  
of the underlying lattices is emphasized. Various states of the CM lattice are examined 
in delail by means of wavefunctions, resistance0 and a multifractal analyxis. Critical 
states are characterized both by scaling transformations and by multihctal behaviours. 
We find that states with a strongly localized wavefunction under a given system she 
exhibit additional wavepackets with increasing system she. This shows that the localized 
behaviour of allowed states is a feature of the finite size of the system, and implies the 
absence of strongly localized states in a system of in6nite size 

1, Introduction 

Since the discovery of the quasicrystalline phase [l]  much attention has been devoted 
to the study of quasiperiodic systems. The Fibonacci lattice, a one-dimensional version 
of a quasicrystal, has most widely been studied [2-S], and it is well established 
that the energy spectra form a Cantor set with Lebesgue measure zero [9] and 
the corresponding states are critical. Unusual properties of quasiperiodic systems, 
as well as the possibility of the realization of aperiodic superlattices by means of 
epitaxial-growth techniques [lo], have stimulated the investigations of other kinds of 
deterministically aperiodic structures such as Thue-Morse [ll], circle [12,13], Rudin- 
Shapiro [U], perioddoubling [14] and hierarchical [15-17] systems. A kind of GF 
lattice has also been introduced and studied extensively [18-29]. 

As in the cases of ordinary Fibonacci and Thue-Morse lattices, the trace-map 
approach has been used as a major tool in current research into the physical properties 
of GF lattices [18-21,25-291. This approach makes it easy to calculate the energy 
spectrum and to examine the properties of the states corresponding to allowed 
energies at any size of the system. Gumbs and Ali [U] have derived trace maps 
for several kinds of lattices to find that some of them are volume non-preseiving 
and non-invertible unliie the trace map of the ordinary Fibonacci lattice. KoMf 
and Ali [20] have studied the attractors of volume non-preserving trace maps to 
illustrate the coexistence of regular Bloch-like and Cantor-like energy spectra. You 
et a1 [21] have independently derived a unified trace map to study diagonal and off- 
diagonal tight-binding models, and showed that the energy spectra are Cantor-like 
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ones. Other kinds of approaches have also been tried. Severin and Riklund [22] have 
calculated the Fourier spectrum of GF lattices to classify the lattices into two classes 
depending on the spectral properties, and illustrated that the ordinary Fibonacci 
lattice is much more like the members of the (n > 1, m = 1) class than those of 
the (n = 1, m > 1) class. They have also analyzed one of the lattices (the nickel- 
mean lattice) to obtain numerically localized, critical and extended wavefunctions [23]. 
Chakrabarti and Karmakar 1241 have calculated local and average Green functions 
of GF lattices by using an exact renormalition-group (RG) method to classify the 
lattices into two p u p s  depending on their energy spectral properties, and illustrated 
that one of the groups has critical eigenstates while the other has some extended 
states. 

It is well known that the ThueMorse lattice has a singular continuous Fourier 
spectrum [30], which can be thought of as a link between quasiperiodic and disordered 
ones. On the other hand, there exist extended states belonging to Bloch-lie energy 
spectra, which suggests that the electronic structure is intermediate between periodic 
and quasiperiodic ones. A similar situation holds for a class of GF lattices. The 
existence of extended states in a class of GF lattices is well known [20,23,24,32], 
while the aperiodicity of the class is known to be intermediate between quasiperiodic 
and disordered systems [22,25,31] even though there is no proof whether the Fourier 
spectrum of the class is singular continuous or not. This shows that further study of 
GF lattices is needed to understand the above seemingly inconsistent results between 
the geometrical characteristics (Fourier spectra) and energy spectral properties of 
the lattices in a consistent way. Note that most attention, in the existing literature, 
has been paid to the spectral properties, and much less attention has been paid to 
wavefunctions, except for [18,29,32]. Note also that the aperiodicity of a class of GF 
lattices may suggest the existence of localized states, and there exist some claims of 
the existence of localized states in certain cases of GF lattices [18,23,32]. 

In this paper, we study the relation of the energy spectral properties to the 
geometry of the underlying lattices as well as the characteristics of allowed states of a 
certain class of GF lattices. We also examine whether localized States can exist in the 
present model. The outline of the paper is the following. In section 2, we consider 
the global properties of the energy spectrum of GF lattices, especially in connection 
with the geometrical characteristics of the lattices. In section 3, the states of the 
CM lattice are examined by means of wavefunctions, resistances and a multifractal 
analysis. The possibility of the localization of the wavefunctions is also examined. 
Section 4 is devoted to a brief summary. 

G Y Oh et a1 

2. Global properties of GF lattices: geometry and energy spectrum 

In the following, we consider a diagonal tight-binding model 

where {Vn} takes two values V, and V, arranged in the GF sequences defined by 
the recursion relation [20] 
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where 1, n and m are positive integers. The substitution rule for the sequence 
equivalent to (2) is given by ( E , A )  + (A,AnBm),  and the GF number Fit, in the 
( 1  + 1)tb generation sequence Sit, is given by the recursion relation 

F,,, = nl$ + ml$-l F, = Fl = 1. (3) 

The incommensurability and the ratios of A to E are given by 

Here, thevalues of u ( n , m )  for (n ,m) = ( l , l ) ,  (2,1), (3,1),  (1,2) and (1,3) 
are golden mean (U,=), silver mean (us), bronze mean (uB), copper mean (ac) 
and nickel mean (uN) respectively, named after Gumbs and Ali [U]. By using the 
incommensurability, F, can be written in a closed form as follows: 

where U+ is u(m,n)  and U- is given by -m/u+.  Note that the CM lattice with 
uc = 2, which will be considered in detail in the following, does not mean periodic 
nor quasiperiodic. Note also that the statistics of letters A and B depends on the 
initial condition of the recursion relation [29]t. In the following we consider only the 
case of the initial condition given by (2). Let us classify the lattices into two series 
as in [19,22], the SM(n > 1, m = 1) and the CM(n = 1, m > 1) series, and consider 
the geometrical characteristics of the lattices. 

In the SM series, u(n,l) belongs to the positive solutions of the following 
quadratic equation and is always irrational for any value of n: 

(7) , 2  U - n u - I = O .  

Furthermore, letter B always exists in isolation while letter A exists in clusters with 
[ u ( n , l ) ]  = n or [ u ( n , l )  + 11 = (n + 1) letters, where the symbol [+I denotes 
the greatest integer not exceeding 5. On these bases, it is easy to consider that the 
sequences of the SM series are closely related to a ' p  sequence' sometimes referred 
to as a 'Beatty sequence' [33]: 

t After the submission of this paper we were kindly informed of the paper by Severin n d [29], which 
deals with a model Similar to ours. In their paper the authors have performed an analytical study of 
the nature of the stales in the CM lattice with WO kinds of initial conditions to prove the existence of 
extended states (similar to the reenrrent wavepackeh in our model or lolIice-l&e wavefunctions in p71). A 
model with initial conditions SO = A, SI = B A  has a = r = 2 and can be described by the substitution 
rule ( A , B )  3 ( B A , A A ) ,  which are different from ours (g = 2 r  = 2 and ( A , B )  -+ ( A B Z ,  A)). 
However, the lattice stmcture resembles ours if a single B element in the model is replaced by BB. 
From this resemblance one may expect similar physical properties between the WO models. The similar 
properties can easily be explained qualitatively by using the approximate RG method [3,5,38]. Note that 
the wavefunction for the 6xed point in the terf corresponds to a class that they treated. A paper by 
Miyazaki and Inoue 1291 also deals with GP latlices with arbitrary initial conditions. 
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The sequence becomes periodic if U is a rational number, and quasiperiodic if U is an 
irrational number. The numbers of I and 0 in the first j th  position of the sequence 
are 

G Y Oh et a1 

j+l 
No = + 4 - + O(1) v 

where 1 /w + l/v = 1. The ratio of ones to zeros in the infinite limit of the sequence 
becomes 

Setting (11) equal to (9, U can be expressed in terms of n as follows: 

U U- = $[(d + 4)'lZ - n + 21. (12) 

It is easy to check that the p sequence with un and a suitable value of shift parameter 
w produces the same sequence with (2) for a given n if we match l(0) with A ( B ) .  
Thus it can be said that the SM series is a class of quasiperiodic structure described 
by (8) with different U. From (E), the relation of U between different n can be 
written as follows: 

%,+I = f(%) (13) 

where the transformation function f(u) can be easily expressed from (12). It 
is interesting to note that Odagaki and Aoyama 1341, who have studied one- 
dimensional periodic and quasiperiodic sequences generated by a projection method, 
found hyperinflation rules which relate sequences characterized by diRerent U, and 
illustrated that the physical properties, such as diffraction patterns and the product 
of transfer matrices, have self-similar structures. They argued that self-similarities in 
physical properties are due to inaation symmetry. Following their arguments, one can 
expect that there may exist an inflation symmeuy satisfying (13), although it does not 
seem to be easy to find the inflation rules, and thus expect that properties such as 
the diffraction pattern have self-similarity. Fourier spectra obtained by Severin and 
Riklund [U] agree well with this expectation. 

The geometry of the CM series is quite different from that of the SM series. There 
is no isolated B letter in the sequence. The letter B always exists in clusters of m 
letters while the letter A exists isolated or in clusters of (m + 1) letters, and it seems 
to be difficult to describe the sequence by a quasiperiodic sequence such as (8). Thus 
physical properties such as the Fourier spectmm and the energy spectmm of the CM 
series may be different from those of the SM series. 

In order to understand the energy spectral properties of the CF lattices we 
calculated the density of states (DOS) by using the negative-eigenvalue theorem (3.51. 
'Ib confirm the result of the DOS and to know the localization behaviours of allowed 
states, we also calculated the inverse localization length defined by E = In( 1 + R ) / N  
as a function of E, where R is the resistance obtained from the Landauer 
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Figure t Energy dependence of E and the DOS of 
the SM lattice (R = 2, m = 1) with V, = -V, = 
0.6 and I = 10(N = 3363). Self-similarilies in 
and the m are clearly shown. 

Figure 2. Energy dependence of E and Ihe DOS of 
the m laltice (n = 1, m = 2) wilh V, = - V, = 
0.6 and I = 12(N = 2731). Self-similaritics are 
not clear. 

formula [36]. Figures 1 and 2 show E and the Dos for typical examples of the 
SM series (n = 2, m = 1; SM lattice) and the CM series (n = 1, m = 2; CM lattice) 
respectively. We take N to be 3363 and 2731 which are the tenth and the twelfth 
periodic approximants of the systems. 

As shown in the figures, E and the DOS of the two lattices show different 
behaviours. In figure 1, self-similarities in and the DOS are clearly s h o w  Moreover, 
one can see that the energies of the allowed states have small widths compared with 
those of figure 2, and one can expect that the total bandwidth of the SM lattice will 
eventually shrink to zero forming a Cantor set in the limit of infinite system size. 
In fact, we calculated the size dependence of the total bandwidth B, for both SM 
and CM series. For the SM series, we obtained B, .., FF6 where the exponent 6 is 
independent of 1, which agrees with the result of Wijnands [37]. 

On the other hand, self-similarities in figure 2 are less clear, and the energy 
spectrum contains broad subbands with negligibly small c, in which the states are 
expected to exhibit extended behaviours [20,23,24,32]. The size dependence of B, 
for the CM lattice is different from that of the SM lattice. We could not obtain the 
1-independent exponent 6, which seems to be the existence of dense subset in the 
spectrum. Besides, there exist large values of E corresponding to the allowed states, in 
which localized behaviours of the states are expected. We treat the behaviours of these 
states in section 3. We want to comment here that figure 2 gives a qualitative picture 
with which to understand the results of diffrzction patterns and energy spectra. From 
this figure and the study to be discussed in section 3, one can see that the allowed 
states of the CM lattice exhibit either extended or localized behaviour depending on 
the values of and the DOS, which in turn reflects the Bloch-like energy spectra and 
the aperiodicity of the lattice. 

The global structure of SM and CM lattices has six and five main subbands 
respectively. The origin of the global structure can be easily understood by means 
of an approximate RG approach [3,5,38]. For the regime where the approximate 
RG method holds (l/lVA - V,l < I), the constructing elements for the SM and 
CM lattices are given by { B , A A , A A A )  and { B B , A , A A A }  respectively. In 
each case, the constructing elements give six energies which give rise to the global 
structure. But, in the case of the CM lattice, the energy coming from the monatomic 
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element (A)  and one of the three energies coming from the triatomic element (AAA) 
are nearly degenerate in the lowest-order approximation [39], which results in the 
five main subband structure. Though the argument of the approximate RG method is 
appropriate for the large-V regime, the continuity of E-V phase diagrams in figures 
3(a) and (a) insures that the global band structure is easiiy understood for any value 
Of v. 

C Y Oh et a1 

I 

v2: 0 
-5  0 5 -5 0 5 

E E 
Figmm 3. V dependence of the energy SpeUNm for (a) the SM lattice with N = 239, 
(6) the (hl lalfia with N = 171. 

One of the interesting features of GF lattices lies in the V dependence of the 
energy spectra. If a lattice were periodic with VA = V, = V, the energy spectrum 
would merely shift to a higher energy region without changing the bandwidth as the 
potential V increases. However, the situation for non-periodic lattices becomes quite 
different. Figures 3(a) and 3(b) show the V dependence of the energy spectra of 
the SM and the CM lattices respectively. The splitting behaviours between the main 
subbands are different from each other. In the SM lattice the first subband shifts to the 
lower energy region, whereas the first two subbands shift to the lower energy region 
in the CM lattice. From the study of any (n, m) pairs of the lattices we know that 
for the SM series only the first subband shifts to the lower energy region while others 
shift to the higher energy region, and for the CM series the first m subbands shift to 
the tower energy region. These behaviours are closely related with the geometries of 
the lattices. As mentioned previously, the letter E in the SM series always exists in 
isolation regardless of the value of la, and these isolated B letters form a subband 
which has lowest energy due to VA = -V, = V > 0. On the other hand, the letter 
B in the CM series always exists in clusters consisting of m letters, and these clusters 
form the first m lowest bands. 

3. Wavefunction and resistance 

In this section we examine various wavefunctions of a kind of GF lattice, the CM 
lattice (n = 1, m = 2), in detail. Tb this end, one can write (1) as follows: 
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where the transfer matrix M(n) is defined by 

M(n) = 

and 

M(%) = M(n)M(n-l) . . .M(Z)M(l) . 
From the construction rule (Z), the recursion relation for the transfer matrices 
M, M(Ft) can be written as 

M,+, = M:-,Ml Mu = M, Mi = MA (17) 

and the trace map zI E iTk(M,) for the CM lattice [18,21] is given by 

where the initial conditions are 

x-i = 1 xu= $ ( E -  V,) zI = $(E- VA) (19) 

Y = z I  - ~z,-,(z+ - 1) -$-R(MF-~~M,-~) 

and 

(20) 2 

is an l-independent quantity (i.e. yt+, = 7,). Using the initial conditions, one can 
write 7 = zi - 2zu. When the periodic approximation with period F, is used, the 
energy spectrum can be obtained from the requirement lzll < 1, and the eigenvalues 
under the periodic boundary condition can be obtained from x, = 1. 

In the trace space, there exist lots of periodic points having any cycle such as 
(*~,=FI) ,  ( o , * ~ , = F $ ) ,  (*$,T$,FI) ,  (*$ ,*$ ,TI) ,  etc. There also exist points 
which will flow into the periodic orbits even if they do not belong to the eriodic orbit 

yields 3-cycle points (-ll,.f;,q=f) after 1 = 2 Furthermore, there can exist a fixed 
point that always gives an eigenenergy of any generation of the CM sequence. It occurs 
when (q,, z,) = (0,-1). One can check from (18) that of = 0 and = -1 mean 
zl+m = 1 for any m > 1. The term 7 is known to play an important role in the 
trajectories of the trace map, and thus in the energy spectra of the system [ZO]. For 
171 > 1, most of the points except for the periodic points and their predecessors 
are known to escape to infinity in a few iterations and the surviving points gives 
the Cantor-like part of the spectra of quasiperiodic systems. On the other hand, for 
171 < 1, there can be infinitely many aperiodic points that never escape, and the 
energies corresponding to these bounded aperiodic orbits contribute to Bloch-like 
bands. 

In the ordinary Fibonacci lattice, wavefunctions and resistances corresponding to 
the periodic orbit are known to exhibit self-similarity /40]. This feature is not peculiar 
to the ordinary Fibonacci lattice, but appears in the CM lattice when 171 > 1 holds. 

initially. For example, putting the initial conditions (xo,xI) = ( 0 , k ~ )  P or (&$,O) 
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Figure 4 shows a wavefunction corresponding to 3-cycle orbit (i ,  - i ,  -1). We take 
E = 0, V, = 0.5 and V, = -1. Successive figures (6) and (c) show the self- 
similarity clearly. Figure 5 shows a resistance R, which also exhibits the self-similar 
peak structure. We take E = 0.5, V, = -1.5 and V, = 1 corresponding to 2-cycle 
orbit (-$,l). There exists a self-similarity between the system size N = Fi and 
N = q+4, and the peaks increase algebraically. The 4-cycle of the selfJimilarity is 
due to the &cycle of the full transfer matrices, i.e. Mi = M,+, even though s, = q+*. 
It is interesting to note that R, is symmenic for the system size N = F4r+l, 
and there exist two maximum peaks for that size. The peak points are located 
at N,, = '& F,,-,(= 6,112,1818,...) and FZk - 2(= 12,226,3640,...) . 
Setting R,,, - N2B, we obtain the exponent p = 0.3677 for these peak points. 
Thus the scaling transformation of the self-similar peak structure can be written as 
N -+ Nu; and R, -+ A2R,, where A = =io. 

G Y Oh el ai 

10923 
N 

------! 
5464 6828 

N 

Figure 4. A self-similar wavefunction Cor a stale 01 
E = 0 with VA = V, -k t = 1 corresponding to a 

8313 3-cycle point (1 ,  - t ,  -1) of lhe trace map. Successive 
figures ( b )  and ( c )  show the self-similarity clearly. 

3 
N 

Non-self-similar wavefunctions correspond to the aperiodic orbits of the trace 
map, and the existence of infinitely many orbits makes this type of the wavefunctions 
dominate in the CM lattice. Figure 6 shows an example of chaotic wavefunctions for 
the systcm of V, = V, = 0.6, N = 5461( 1 = 13) and E = 1.402 118 107741 281 210, 
which is an eigenvalue = 1) under the periodic boundary condition. The 
bandwidth A E  containing this eigenvalue is A E  - 2.65 x which is somewhat 
smaller than that of the extended states. As shown in the figure, there is no apparent 

Using the Hamilton-Cayley theorem, one can deduce thc Mh power of a 2 x 2 
scaling. 

unbnodular matrix M as follows: 
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a" 

0 
1 

N 

50 

a" 

C 

1 

N 
'1 

Figure 5. N dependence of RN for a stale of E = 0.5 with V, = -1.5, V, = 1 
eomponding to a Zcycle point (- f ,1) of the trace map for (a) N = 2731(1 = 12) 
and ( b )  N = 171(1= 8). The self-similarity between (e) and (a) is clearly shown. 

I 

* O  
Id1 

- 1  

-2 
1 5461 0 20 10 60 80 

N N 
F@R 6. A chaotic wavefunction for a state of 
E = 1.402118107741281210 with \5 = -V, = 
0.6 and I = 13(N = 5461). 

Fkure 7. A wavefunction for a state o€ E = -1  
with V, = -VB = 1 when the periodic boundaly 
condition is imposed. 

M k  = Ck(m)M - Ck-ll (21) 

where I is the unit matrix, and Ck(m)  is a polynomial of m E ?t( M) (a Chebychev 
polynomial of the second kind) which satisfies the recursion relation 

G + * ( m )  = mck(m) - Ck-*(m) (22) 

with C,(m) = 1 and CZ(m)  = m. When lml < 2, the kth polynomial is given by 

Using the above equations we examined two typical examples of wavefunctiom 
where the initial condition (zo,zI) satisfies IyI < 1. The first example is a 
wavefunction corresponding to (zu,zl) = (0,-1), and thus IyI = 1 which is the 
Critical value whether or not the Bloch-like spectrum can exist in the limit of a system 
of infinite size. As previously mentioned, the initial condition gives a fixed point 
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I, = l(1 2 2) and the corresponding energy gives an eigenvalue of the system. It is 
located at the edge of the second main subband in the energy spectrum. Combining 
the initial condition with (19) leads to W(M,) = 0 and W(M,) = -2, which results 
in 

G Y Oh et a1 

C,(B) = sin($kr) C,(A)  = (-l)k+'lc. (24) 

M$ = - I  M i  = (-l)'+'[kM, + (k- l)l]. (25) 

Thus one can write 

The relation M& = -I allows M(") to have a form of Mk or M,M; (neglecting 
signs) where 1 4 k < n. For example, M(*) = MEMA, M(3'f= -MA, M(4) =-Mi,  
M(5) = -Ma, etc. In particular, for k = 6 

The periodic boundary condition +F, = & together with (14) and (26) gives rise to 
the relation 

+I = -+a (27) 

regardless of 1, and thus the strengths of the probability amplitude at any site can be 
determined. When M(") has a form of M i ,  

1+*1 = KMi)ZI+l+ (Mi)ZZ+"I 
= I(-l)"+zk+,+(-l)~+Z(lc- 1)& 

= I+ol. 
Similarly = I+"I holds when M(") has a form of M,M;, and thus the 
wavefunction corresponding to the fixed point is extended with equal strength of 
the probability amplitude at any site, as shown in figure 7. We take E = -1, 
r/, = -V, = 1 and +" = 1. The sign of the probability amplitude is closely related 
to the lattice geometry. That is, +,, = 1 when n is on the sites of the letter B or 
the centre sites of the AAA cluster, while +, = -1 when n is on the sites of the 
isolated letter A or on the edge sites of the AAA cluster, as can be seen in the 
figure. Note that the state corresponding to the fixed point is very sensitive to the 
boundary condition. The extended wavefunction with constant probability amplitude 
is the result of the periodic boundary condition. When one imposes other kinds 
of boundary conditions, the shape of the wavefunction changes considerably. This 
is because the (1,l) and (1,2) (or (2 , l )  and (2,2)) components of M i  in (25) 
contribute to the monotonic change of the wavefunction when +, # The 
effect of boundary conditions also clearly appears in the resistance. Figures 8(a)  
and (b) show the resistances for the wavenumber of the incident wave I< = T and 
+T respectively. (The former is equivalent to the periodic boundary condition, i.e. 
+, = -@", while the latter is not.) The algebraically localized behaviour in figure 8(b) 
is clearly shown. From the plot of IogR, against logN we obtained R ,  - N Z P  
with an exponent @ = 1.00 for the algebraically localized state, which is a feature 
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a' a" 

600 
N 

0 zoo 600 0 zoo 
N 

Figure 8. N dependence of RN when the wavenumber of the incident wave is ( a )  
K = T and (a) K = i .  The parameters are the =me as in figure 7; (a) show 
atended behaviour while (a) exhibits algebraically localized behaviour. 

qualitatively similar to band-edge states in the periodic system and the state of a kind 
of fixed point in the hierarchical system [15]. 

The second example is a wavefunction corresponding to (q,,q) = (O,$). In 
this case, the trace map has a 3-cycle orbit (0 ,  9, *) and IyI < 1, which means 
that the energy belongs to a Bloch-like spec". In this case 

C, (B)  = sin(fk?i) C , (A)  = 2sin(~lcrr) Mi = -I (W 
and 

Note that Mg = - I  allows M(R) to have the same form as that in the fixed-point case. 
Applying the periodic boundary condition leads to the following relation between GI 
and q0: 

Explicitly, GI = &&,,(d * 1)Gu and [(d* 1)/2]$u depending on the E of the 
periodic approximant F,. From (28) and (29), one can also check that /$,I has 
only three kinds of values for any case of the relation between and &. For 
example, when the periodic approximant F, with E = 4 mod 6 is applied, /$,I takes 
one of the values {1,& - 1,2 - d?} as shown in figure 9. (We set = 1.) 
Thus the wavefunction having periodic orbits exhibits extended behaviour rather than 
self-similar behaviour, in contrast with that for the case IyI > 1. Figure 9 shows 
that the sign and the probability amplitude of the wavefunction are rather chaotic 
in comparison with those of the fixed point. Note that imposing another kind of 
boundary condition does not change the property of the state, unlike that of the fixed 
point. This is because each component of Mi in (26) does not increase, but changes 
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- 0 4 ,  , . . . I . .  I 
10 60 80 

N 
20 0 

Flgnrc 9. An extended wavefunclion for a state of E = 4512 with V. = V, - 
-JJ/2 mrraponding UI a 3 9 l e  point ( O , d f 2 ,  - d / 2 )  of the vacc map. 

= 

sinusoidally as k increases, and the wavefunction always shows extended behaviour 
irrespective of the relation between +, and %. 

That the randomness of the CM series is intermediate between the ordinaly 
Fibonacci and disordered lattices suggests the possibility of the localization of the 
wavefunctions, and the existence of localized wavefunctions has been reported for 
some models in GF lattices. Using the off-diagonal model, Gumbs and Ali [U] and 
You el 01 1321 have reported the existence of localized wavefunctions, and Severin 
and W u n d  [U] have reported localized wavefunctions in the nickel-mean lattice. 
However, we think that the localization of the wavefunction is a feature of the 
finite size of the system, i.e. the periodioappmimation effect, at, least for the 
present model as discussed below. Like the above authors, we also obtained strongly 
localized wavefunctions for a certain approximated system. Figure 10(a) shows such a 
wavefunction obtained for the system with V, = -V, = 0.6, N = 2731 ( I  = 12) and 
E = 1.257678358452100007. This energy corresponds to q=12 = 1.0 and an exact 
eigenvalue of the system. The bandwidth is A E  - 8.67 x which is very much 
more narrow than that of figure 9. However, the situation becomes quite different 
when the size of the system changes, as shown in figure lO(b). Note that the gross 
band structure becomes unchanged in the E-! plane irrespective of the system size, 
and the eigenvalues increasing with generation only fill the band regions, avoiding 
the gap regions which are already tixed in the previous generations [6]; the exact 
eigenvalues can be easily obtained from the trace map. These enable us to trace the 
subsequent eigenvalues and bandwidths as 1 changes, and we obtain the results that 
can be summarized as follows. 

As I changes from 12 to 13, 14, 15, 16, . . ., (i) the number of the eigenvalues 
and subbasds changes to 1, 3, 5, 11, . . .. (Note that the CM Fibonacci numbers are 
1, 1, 3, 5, 11, . . ..) (E) The bandwidth A E  changes to 4.33 x IO-", 3.34 x 
2.04 x 10-14, . . .. 

Figure 10(b) shows an example of the subsequent eigenvalues ( 1  = 13). The 
eigenvalue is E = 1.257678358452001899, which is slightly different from that of 
figure lO(a). The appearance of an additional wavepacket is clearly shown. We 
also tested other subsequent eigenvalues, and obtaincd the result that the number 
of the wave packets in the subsequent generation increases two times as that in the 
previous generation, We repeated the same analysis for different energies E showing 
localized wavefunctions for a certain 1 and obtained results similar to the above 
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Figure 10. Wavefunctions with a strong degree of spatial localization. V, = -V, = 0.6. 
(0 )  E = 1.2576783584521WW7, I = 12 and (b) E = 1.2576783584.52W190, 
1 = 13. 

ones. This clearly shows that the appearance of spatially localized wavefunctions as 
in figure lO(a) is a feature of the lth approximated periodic system, and that one 
cannot tell the existence of localized states in the limit of infinite system size. The 
appearance of additional wavepackets seems to be closely related to the geometry of 
the lattice. 

The relation of the size of the system between the 1th and ( 1  + 1)th generation 
sequences is Fl+, = 2Fl & 1, and the ending block of the system with F,,, letters is 
either BB or A depending on whether 1 is odd or even. Note that if we replace the 
ending block B B ( A )  by A ( B B ) ,  the size of the system with F,+, letters becomes 
exactly twice as large as that with F, letters and the arrangement of the lattice 
becomes twofold, i.e. S,,, = Sf S,. It reminds us of the periodic arrangement of the 
sequence. In the case of figure 10, if we set S = St=,, and S' = S with the ending 
block A replaced by BB, the lattice becomes 

s -+ ss' + ss'ss + ss'ssss'ss' + ss'ssss'ss'ss'ssss'ss -t . . I .  
In fact, S' is approximately equal to S for large 1, and thus the electron feels a 
periodic potential with a unit cell S, which results in the appearance of recurrent 
wavepackets. This suggests that the localized states are not allowed in the CM lattice 

The 
multifractal method is known to be effective in characterizing wavefunctions, and thus 
it has been applied to characterizing wavefunctions in various systems [7,8,16,44-46]. 
Recently, it has also been applied to characterizing wavefunctions under electric fields 
in the hierarchical [17] and the incommensurate 147 systems. Defining the partition 
function Z(q, I )  and an exponent T ( q )  as 

t We recently found similar behaviour in the Thue-Morse lattice. Slates with a localized wavepacket in a 
certain length show additional wavepackets as the size of the system increases, and the wavefunctions are 
classified into various rypes depending on the clustering types of the lattice elements. In I411 we refer 
lo them as lanice-likc wavefunctions. After the submission of this paper we were kindly informed of a 
reference 142) dealing with the Soucoulis-Economou model where extended states were reponed which 
appear as 'localized' if the system size is not large enough. 

P l t .  
We also performed a multifractal analysis [41] on the wavefunctions. 
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PI@i-e 11. (f, U) spectra for entical stales showing self-similar wavefunctions. 
E = 0, VA = 0.5 and V, = -1. ( b )  E = 0.5, VA = -1.5 and VB = 1. 

(a) 

one can determine ~ ( q )  from the slopes of In Z( q, 1 )  against In I plots, where pi(l) is 
the probability measure of finding an electron within the ith segment of size 1. After 
making the scaling ansatz pi([) - Zas and assuming the density of scaling exponents 
to be fl(a)dm - l-f(-)da, one can obtain the multifractal spectrum ( f , a ) ,  using 
the relations 

a(d = dq dT(q) f ( a ( d )  = qa(d - 7(d.  (32) 

A critical wavefunction has a nonlinear T ( q ) ,  and thus has a continuous ( f , a )  
spectrum defined on the finite interval [amin, a,,]. On the other hand, an extended 
wavefunction has ( f, a) = (1, I), and a localized wavefunction has ( f, a) = (0,O) 
and (1,~). 

The results of the analysis on the critical wavefunctions are shown in figure 11. 
Figure Il(a) corresponds to the state having a 3-cycle orbit of the trace map. One 
can see that f(amin) = 0 and f(a,,) # 0. Note that the procedure we take 
in calculating 7 ( q )  is very accurate for small values of 141, but there exist large 
fluctuations in the InZ(q,1) against lnl plot for large values of IqI and thus it 
becomes inaccurate to fit a straight lie. We therefore tried to obtain the (f, a) 
spectrum in the region of the values of IqI where the accuracy is good. In the 
calculation we found that f ( a )  easily goes to zero with increasing values of q in the 
positive region, while it is hardly variable under some values of q in the negative 
region. On this basis, we conjecture that f(ami,) = 0 and f(a,,) # 0. Thus 
we expect that the set of points having largest p i ( l )  goes to a single point, while 
the set of points having smallest p j ( l )  does not, since the maximum and minimum 
values of a correspond to the minimum and maximum values of pi(!), respectively. 
Recently Fujiwara ef a1 [8] have calculated the ( f , a )  spectrum for the states of 
the ordinary Fibonacci lattice and argued that f(amin) # 0 and f(a,,) = 0 are 
general properties of critical wavefunctions. However our result does not follow their 
argument, and their argument seems to hold only for the ordinary Fibonacci lattice. 
Note that similar behaviours can be found in the Haper model [46]. 
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Figure ll(b) corresponds to the state having a 2-cycle orbit of the trace map. In 
contrast with the case of Egure ll(a), we found that f ( a )  goes rapidly to zero in the 
negative-q region and not so rapidly in the positiveq region. However, the rapidity in 
figure ll(b) is better than that in Egure Il(a) with increasing and decreasiug values 
of q, and we obtained f(am,) = f(am,) = 0 as in the case of the band centre state 
of the ordinary Fibonacci lattice [7]. 

4. Summaly 

We have studied the electronic properties of OF lattices by means of the negative- 
eigenvalue theorem, the Landauer formula and a multifractal method. The Dos and 
the V dependence of energy spectra for silver-mean (SM) and copper-mean (CM) 
series clearly show distinctive features, which are closely related to the geometrical 
characteristics. The allowed states of the CM lattice were investigated in detail, and 
the scaling properties of the critical states were demonstrated. In contrast with the 
SM series, extended states exist in the CM lattice. There also exists an algebraically 
localized state in a certain case. However, we found that states with a strongly 
localized wavefunction for a given 1 exhibit additional wavepackets as 1 increases, 
which is closely related to the geometrical characteristics of the CM lattice. This 
behaviour of the wavefunctions implies the absence of strongly localized states in the 
CM lattice. We also performed a multifractal analysis on the critical wavefunctions, in 
particular on the self-similar wavefunctions, to obtain ( f, a) spectra. 
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